Brain Ultrasound in neonates and infants: still an important first line imaging

Riccabona Michael
University Hospital Graz, Austria
Established applications, value of Doppler-US + new aspects

• Basic neurosonography
 - well established

• New applications & modern techniques
 - broadened US potential
 • Doppler & (amplitude coded) color Doppler US
 • high resolution US (HR)
 • harmonic imaging (HI)
Established applications, value of Doppler-US + new aspects

New aspects & new US methods

- increasingly integrated into standard imaging
 - transcranial approach (TCI)
 - spinal canal
 + extended view
 - US of the infants orbit & skull
 - contrast-enhanced US
 - 3DUS
Introduction

Pediatric neurosonography predominately relies on

• **transfontanellar US**
 - for viewing the neonatal brain, including DS
 = modality of choice for bedside assessment

• **small part US of the spinal canal**
 - for evaluating the neonatal spinal canal

Many clinically important indications established
Basic US requisites

• **Sector array**: transfontanellar & transtemporal

• **Linear array**: brain surface, skull, orbit, spine …

• **Frequency**: 15 / 10 - 2 MHz
 - for (N)ICU: (a)CDS / PW-DDS capabilities
 + transfontanellar & axial / transtemporal views

• **Knowledge & experience & prudent skill**
 - **mind:** low output (Watt) = low MI/TI
 - aim at short investigation time in preterm babies!
Normal brain US images

Standardized & comprehensive assessment

- (para-) sagittal
- coronal
Normal brain US images

Standardized & comprehensive documentation

Minimaldokumentation: Anforderung für den Normalbefund

- Interhemisphärenspalt
- Corpus callosum
- Seitenventrikel
- Cavum septi pellucidi
- Stammganglien
- Fissura Sylvii

Koronarschnitt durch die Vorderhörner der Seitenventrikel

- Interhemisphärenspalt
- Corpus callosum
- Seitenventrikel und III. Ventrikel
- Cavum septi pellucidi
- Stammganglien
- Fissura Sylvii

Koronarschnitt durch die Seiten- und den III. Ventrikel (Höhe der Foramina Monroi)

- Interhemisphärenspalt
- Corpus callosum
- Seitenventrikel und III. Ventrikel
- Cavum septi pellucidi
- Stammganglien
- Fissura Sylvii

Koronarschnitt durch die Hinterhörner und Trigona der Seitenventrikel

- Interhemisphärenspalt
- Corpus callosum
- Hinterhörner und Trigona der Seitenventrikel mit
- Plexus choroideus
- Periventrikuläres Marklager

Medianer Sagittalschnitt durch den Vermis cerebelli

- Corpus callosum
- Cavum septi pellucidi
- Plexus choroideus des III. Ventrikel
- III. und IV. Ventrikel
- Vermis cerebelli

Parasagittalschnitt links und rechts durch die Seitenventrikel

- Seitenventrikel
- Stammganglien (Nucleus caudatus und Thalamus)
- Plexus choroideus

Parasagittalschnitt periventrikular insbesondere bei Frühgeborenen

- Periventrikuläres Marklager
Additinal sections

- **Brain surface** => HR-US, linear transducer
 - compulsory in special conditions
Additinal sections

- **Brain surface** => HR-US, linear transducer
 - compulsory in special conditions
 - infarction
 - „battered child“
 - thrombosis
 - gyration disorders
Additinal sections

• **Brain surface** => HR-US, linear transducer
 - compulsory in special conditions
 • infarction
 • „battered child“
 • thrombosis
 • gyration disorders

• **Axial acquisition** => sector Tdx
 - helpful, lower frequency
 e.g., extra-axial collections
 brain stem & posterior fossa, …
How to measure

- **Standardized sections**
 - all pathology
 - in 2 planes

Lviv 2011
How to measure

• **Standardized sections**
 - all pathology
 • in 2 planes
How to measure

• **Standardized sections**
 - all pathology
 • in 2 planes
 - essential
 follow-up
How to measure

- **Standardized sections**
 - all pathology
 - in 2 planes

 - essential
 for follow up

 medico-legal aspects, ...

- use „landmarks“
 as a reference

 e.g. midline structures, ...
Typical US findings

• PVE / PVL
 in preterm babies
 - apnoea, hypoxia, low RR, ...
Typical US findings

• **PVE / PVL**
 - in preterm babies
 - apnoea, hypoxia, low RR, ...

• **US findings:**
 - periventricular echogenicity ↑
 - particularly suspicious if
 - patchy,
 - inhomogeneous,
 - asymmetrical ...
Typical US findings

• PVE / PVL
 in preterm babies
 - apnoea, hypoxia, low RR, ...

• US findings:
 - periventricular echogenicity ↑
 - patchy, inhomogeneous, ...

• Initially often difficult to differentiate
 - may be normal in immaturity

 clue to diagnosis => follow-up (cysts, ...)
Most frequent query: IVH

• Typical in preterm babies
 - vary with gestational age
Most frequent query: IVH

- Typical in preterm babies
 - vary with gestational age
- **SEB = IVH I°**
 DD: plexus bleed congested plexus
Most frequent query: IVH

- Typical in preterm babies
 - vary with gestational age
- SEB = IVH I°
 - DD: plexus bleed
 - congested plexus

- IVH II° + III°

- III + secondary PVH
 - = IVH IV° in old terminology
Most frequent query: IVH

- Typical in preterm babies
 - vary with gestational age

- SEB = IVH I°
 DD: plexus bleed
 congested plexus

- IVH II° + III°

- IVH III + secondary PVH
 \Rightarrow hydrocephalus & cysts
Most frequent query: IVH

- Typical in preterm babies
 - vary with gestational age
- \textbf{SEB = IVH I°}
 - DD: plexus bleed
 - congested plexus
- \textbf{IVH II° + III°}
- \textbf{IVH III° + secondary PVH}

DD: hemorrhagic infraction for other reasons
Other cranial hemorrhages

• In a term neonate
 - brain stem bleed
Other cranial hemorrhages

- In a term neonate
 - brain stem bleed
- After trauma
 e.g., cesarean section
 - tentorial hemorrhage
Other cranial hemorrhages

- In a term neonate
 - brain stem bleed
- After trauma
 - e.g., cesarean section
 - tentorial hemorrhage
- Secondary hemorrhage
 - hemorrhagic infarction
 - (vascular) malformation
 - tumor (lipoma), sinus thrombus ...
Hydrocephalus & atrophy

• Posthemorrhagic findings: cysts
• Hydrocephalus
 - echogenic wall after bleed
Hydrocephalus & atrophy

- **Posthemorrhagic findings: cysts**
- **Hydrocephalus**
 - echogenic wall after bleed
 - congenital brain malformation?
 - axial approach
 - occipital scan
 - AVM? - CDS
Hydrocephalus & atrophy

- Posthemorrhagic findings: cysts
- Hydrocephalus
 - echogenic wall after bleed
 - congenital brain malformation?
 - axial & occipital approach, AVM?
- brain pressure & drainage need?
 - eye-US & DDS
Hydrocephalus & atrophy

- Posthemorrhagic findings: cysts
- Hydrocephalus
 - echogenic wall after bleed
 - congenital brain malformation?
 - axial & accipital approach, AVM?
 - brain pressure & drainage need?
 - eye-US & DDS
- DD: atrophy, subdural collection
Hydrocephalus & atrophy

- Posthemorrhagic findings: cysts
- Hydrocephalus
 - echogenic wall after bleed
 - congenital brain malformation?
 - axial & occipital approach, AVM?
 - brain pressure & drainage need?
 - eye-US & DDS
- DD: atrophy, subdural collection

= follow-up essential
 - for clinical course & DD (other cysts ...)

Lviv 2011
US criteria in brain malformations

• Usually diagnosed prenatally
 - postnatal confirmation + follow-up + exact diagnosis
US criteria in brain malformations

• Usually diagnosed prenatally
 - postnatal confirmation + follow-up + exact diagnosis

• US-aspects:
 - corpus callosum
 + septum pellucidum?
 - CSF spaces
 - posterior fossa!
US criteria in brain malformations

- Usually diagnosed prenatally
 - postnatal confirmation + follow-up + exact diagnosis

- US-aspects:
 - corpus callosum
 + septum pellucidum?
 - CSF spaces
 - posterior fossa!
 - brain parenchyma => HR-US
 - gyration? heterotopia? ...
Other & unusual views / access

• **Occipital & nuchal**
 - posterior horn & posterior fossa
Other & unusual views / access

• Occipital & nuchal
 - posterior horn & posterior fossa

• Transtemporal + axial
 - great vessels + DDS / CDS
 • comparison, ...
 - brain stemm
 - extra-axial collections
Other & unusual views / access

• Occipital & nuchal
 - posterior horn & posterior fossa

• Transtemporal + axial
 - great vessels + DDS / CDS
 • comparison, ...
 - brain stemm
 - extra-axial collections

• Older children
 - fontanella closed => allways TCI
Modern US - HI in the brain

Transfontanellar US

• improved border definition
Modern US - HI in the brain

Transfontanellar US

• improved border definition

• depiction of focal lesions
 - tumors, edema, abscess, ...
 - hemorrhage, ...

Lviv 2011
Modern US - HI in the brain

Transfontanellar US

- improved border definition
- depiction of focal lesions
 - tumors, edema,
 - hemorrhage, abscess, ...
- delineation of liquid structures
 - hydrocephalus, cysts, ...
 - shunt, ...
What about Doppler sonography

= established + helpful tool
 - allows for functional evaluation
 - not achievable by any other method

• Fontanellar approach
 - always use also duplex Doppler
 - perform spectral analysis
What about Doppler sonography

= established + helpful tool
 - allows for functional evaluation
 - not achievable by any other method

• Fontanellar approach
 + transtemporal CDS
What about Doppler sonography

= established + helpful tool
 - allows for functional evaluation
 - not achievable by any other method

• Fontanellar approach
 + transtemporal

• Many indications
 - vessel anatomy
 - brain perfusion
 - DD liquid - vascular
e.g., Asphyxia

Typical development:
- initially normal
- then hyperemia
 => RI normal or ↓
e.g., Asphyxia

Typical development:
- initially normal
- then hyperemia
 => RI normal or \(\downarrow \)
- increase in resistance
 => \(V_{\text{diast}} \) reduced => RI = \(\uparrow \)
 • then \(V_{\text{syst}} \) \(\downarrow \)
 • tent shaped diastoly
e.g., Asphyxia

Typical development:
- initially normal
- then hyperemia
 => RI normal or \(\downarrow\)
- increase in resistance
 => \(V_{\text{diast}}\) reduced => RI = \(\uparrow\)
 • then \(V_{\text{syst}}\) \(\downarrow\)
 • tent shaped diastoly
 • diastolic flow reversal
- undulating blood => no sufficient perfusion, brain death
Older children => query brain death?

- After every cerebral hypoxia, using TCI
 - drowning, ...
 - bed side evaluation
DS in brain pressure

• Flow pattern change with intracranial pressure
 - basic-DDS => normal?
 - extracranial flow pattern?
 - V_{syst}, V_{diast}, RI ...
 - standardized ACI-DDS
 - flow velocities increase with pressure
 - difference extra- & intracranial portion
DS in brain pressure

• Flow pattern change with intracranial pressure
 - basic-DDS => normal?
 - extracranial flow pattern?
 • V_{syst}, V_{diast}, RI
 - standardized ACI-DDS
 • flow velocities increase with pressure
 • difference extra- & intracranial
 • for velocity measurements:
 ALWAYS apply angle correction
DS in brain pressure

• Flow pattern change with intracranial pressure
 - basic-DDS => normal?
 - extracranial flow pattern?
 • V_{syst}, V_{diast}, RI
 - standardized ACI-DDS
 • flow velocities increase with pressure
 • difference extra- & intracranial portion
 • angle correction
 - changes with fontanellar compression
 V_{syst} ↓, RI ↑
Functional DDS

- Note: flow pattern change with circulation
 - with head position
 - SIDS
 - DD subclavian steel phenomenon
Functional DDS

• Note: flow pattern change with circulation
 - with head position
 • SIDS, DD subclavian steel
 - pCO2
 • respirator settings ...
Functional DDS

- Note: flow pattern change with circulation
 - with head position
 - SIDS, DD subclavian steel
 - pCO2
 - respirator settings
 - tachycardia
 - bradycardia ...
 - medication
 - cathecholamine, RR- drugs & inotrop medication., ...
Specific applications

• \textsc{aCDS}: less angle dependency

• Peripheral vasculature
 - arteries & veins
Specific applications

- **aCDS**: less angle dependency
- **Peripheral vasculature**
 - arteries & veins
- **Liquor flow**
 - if CSF particles present
Specific applications

- **aCDS**: less angle dependency
- **Peripheral vasculature**
 - arteries & veins
- **Liquor flow**
 - if CSF particles present
- **DD of structures**
 - tumor
 - SDH versus atrophy
Other findings

Brain US may give the clue to diagnosis

• Look for these findings
• Use all options
 - infection & abscess
 - syndromatic disease
Other findings

Brain US may give the clue to diagnosis

• Look for these findings
• Use all options
 – infection, abscess, syndromes
 – necrosis, ...
Don't forget

- Documentation
 - measurements: V_{syst}, $V_{end\,diast}$, RI, TAV
 - angle correction (> 20°)
 - peripheral + central vessels
Don't forget

• **Documentation**
 - measurements: V_{syst}, $V_{end.dia}$, RI, TAV
 - angle correction (> 20°)
 - peripheral + central vessels

• **Arteries** ACA, ACI, ACM, ACP, AB
 - including axial assessment
 - aCDS may be helpful (TCI)
Don't forget

• Documentation
 - measurements: $V_{\text{syst}}, V_{\text{end.dia.st}}, \text{RI, TAV}$
 - angle correction ($> 20^\circ$)
 - peripheral + central vessels

• Arteries ACA, ACI, ACM, ACP, AB
 - including axial assessment
 - aCDS may be helpful (TCI)

• And veins!!
 - V. Galeni, sup. sag. sinus, deep sinus, …
Echo-enhanced US of the brain

- Rare indications in neonates
 - DD: Tu versus blood clot (i.v. ce-US)
 - => increased conspicuity
Echo-enhanced US of the brain

- **Rare indications in neonates**
 - DD: Tu versus blood clot (i.v. ce-US)
 => increased conspicuity
 - *intraluminal* application
 complicated hydrocephalus
Brain ee-US in older children

- Improve visualization
 => see vessels
Brain ee-US in older children

- Improve visualization
 => see vessels
 = capability to analyze
 angle correction ...
Brain ee-US in older children

• **Improve visualization**
 => see vessels
 = capability to analyze

• **Indications**
 - brain perfusion
 • after hypoxia
 • in tumors
 - vascular malformation
 • follow-up
Finally: spinal US

• Established in the neonatal & infant spine

• Prerequisites:
 - high resolution linear Tx
Finally: spinal US

- Established in the neonatal & infant spine
- Prerequisites:
 - high resolution linear Tx
 - experience
 - knowledge, training
- helpful accessories:
 - image compounding
 - split (double) image, m-mode
Finally: spinal US

- Established in the neonatal & infant spine
- Prerequisites:
 - high resolution linear Tx
 - experience
 - knowledge, training
 - helpful accessories:
 - image compounding
 - split (double) image, m-mode
 - extended field of view = panorama US
US technique

• Dorsal approach
 - prone or decubitus position
 - blanket? pillow?
 • neck slightly bent (occipital view)
US technique

• **Dorsal approach**
 - prone or decubitus position
 - blanket? pillow?
 • neck slightly bent (occipital view)

• **Start sacral**
 - continue upwards
US technique

• Dorsal approach
 - prone or decubitus position
 - blanket? pillow?
 • neck slightly bent (occipital view)

• Start sacral
 - continue upwards

• Use unusual approach
 - ventral / transabdominal
 - fill bladder / colon
Extended US examination

• **Use modern techniques**
 - m-mode, extended field of view, 3DUS

• **Know anatomy**
 - normal variants
Extended US examination

• Know anatomy & use modern techniques
 - normal variant? m-mode, extended view, 3DUS

• Visualization of cranio-cervical junction
 - herniation of tonsils?
 - curved / sector array
Extended US examination

• Know anatomy & use modern techniques
 - normal variant? m-mode, extended view, 3DUS

• Visualization of cranio-cervical junction
 - herniation of tonsils?
 - curved / sector array

• If spinal pathology present
 + brain US
 - associated malformation? Hydro?
 - transfontanellar, transtemporal, …
Normal US findings
Other important US indications

- **Skull fracture**
 - linear array, hematoma?
 - look for tear drop lesions!
Other important US indications

- **Extra-axial hemorrhage?**
 - you may try US (axial!)

 If unclear, SAH (tentorial) ...

 => CT!
Other important US indications

• Skull fracture
 - linear array, hematoma?
 - look for tear drop lesions!

• Extra-axial hemorrhage?
 - you may try US (axial!!)
 - tentorial, unclear, SAH => CT?

• DD of uncertain (spine & brain) lesions
 - aCDS, axial view, move, ce-US, ...
Other important US indications

• Skull fracture
 - linear array, hematoma?
 - look for tear drop lesions!

• Extra-axial hemorrhage?
 - you may try US (axial!!)
 - tentorial, unclear, SAH => CT?

• DD of uncertain (spine & brain) lesions
 - aCDS, axial view, move, ce-US, => MRI ...
When to use which modality?

• **Indications for skull film:**
 - fracture & trauma
 - premature synostosis
 - skull defects ...
When to use which modality?

• **Indications for skull film:**
 - Fracture, trauma, premature synostosis, defects, ...

• **CT:**
 - unclear US findings
 - acute severe (multiple) trauma
 - calcifications
 - bone pathology
 - **CT-angiography**
 - if no MRI available
When to use which modality?

- **Indications for skull film:**
 - fracture & trauma, premature synostosis, defects, ...

- **CT:**
 - acute trauma, calcifications, ..
 - bone pathology, CT-angiography
 - if no MRI available

- **MRI:**
 - malformations (heterotopia, gyration ...)
 - metabolic disorders, ...
 - asphyxia, trauma (late phase) / battered child, tumor ...
Imaging algorithms

• **Impact on therapy or prognosis**
 = „evidence based“

• **Patient oriented**
 - adapted to local circumstances

• **As little invasive / ionising as possible**
 - **ALARA** - principle

• No examination without valid indication
 e.g., if US cannot answer query => **CT / MR, NO US**
e.g., birth trauma

• What do we expect, what can we treat?
 - asphyxia
 - hemorrhage
 • tentorial, dural
e.g., birth trauma

• What do we expect, what can we treat?
 - asphyxia
 - hemorrhage
 - fractures / epiphysiolyisis
 • plain film
 • chest, clavicle, ...
 • US => epiphysis
e.g., birth trauma

- What do we expect, what can we treat?
 - asphyxia
 - hemorrhage
 - fractures / epiphysiolysis
 - plain film (chest, clavicle, ...)
 - US => epiphysis
 - spinal trauma
 US = initial imaging
 - bed side

=> MRT! (delayed)
Take away

Modern US of the neonatal brain and spine

- holds great diagnostic potential
 - though not yet all approaches & methods established
Take away

Modern US of the neonatal brain and spine

• holds great diagnostic potential
 - though not yet all approaches established

• improves already established value
 - & documentation

• provides valuable information

Modern US = valuable adjunct to conventional 2DUS
Better ask me - otherwise I shall ask you ...!
Thank You!